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Abstract - Fast Convergent Artificial Bee Colony (ABC) 
algorithm has been emerged as one of the latest swarm 
intelligence based algorithm. Though, there are some areas 
where ABC outperforms the other optimization techniques 
but, the drawbacks like preference on exploration at the 
cost of exploitation and skipping the true solution due to 
large step sizes, are also associated with it. In this paper, to 
improve the exploitation capability of the ABC algorithm, a 
new local search strategy is developed and incorporated 
with ABC. The proposed local search strategy is based on 
linearly decreasing inertia weight which has been applied in 
particle swarm optimization (PSO) algorithm. The 
proposed local search strategy greedily reduces the interval 
of step size for the best solution in the colony. The modified 
ABC is named as fast convergent ABC with an adaptive 
local search (FABCLS). To validate the performance of the 
proposed algorithm FABCLS, 15 benchmark optimization 
functions of different complexities are considered and 
results comparison section shows the clear superiority of the 
proposed modification over the basic ABC. 
Keywords - Artificial Bee Colony, Local Search Algorithm, 
Exploration-Exploitation, Swarm Intelligence.   

I. INTRODUCTION 

Swarm Intelligence is one of the recent outcomes of the 
research in the field of Nature inspired algorithms. 
Collaborative trial and error method is the main concept 
behind the Swarm Intelligence which enables the 
algorithmic procedure to find the solution. Researchers 
are analyzing such collaboration among the social insects 
while searching food for them and creating the intelligent 
structures known as Swarm Intelligence. Ant colony 

optimization (ACO) [1], particle swarm optimization 
(PSO) [2] & bacterial foraging optimization (BFO) [3] are 
some examples of swarm intelligence based techniques. 
The work presented in the articles [4-5] proved its 
efficiency and potential to deal with non linear, non 
convex and discrete optimization problems. D.Karaboga 
[6] contributed the recent addition to this category known 
as artificial bee colony (ABC) optimization algorithm. 
The ABC algorithm mimics the foraging behavior of 
honey bees while searching food for them. ABC is a 
simple and population based optimization algorithm. Here 
the population consists of possible solutions in terms of 
food sources for honey bees whose fitness is regulated in 
terms of nectar amount which the food source contains. 
The swarm updating in ABC is due to two processes 
namely, the variation process and the selection process 
which are responsible for explo-ration and exploitation, 
respectively. However the ABC achieves a good solution 
at a significantly faster rate but, like the other 
optimization algorithms, it is also weak in refining the 
already explored search space. On the other part, it is also 
required to tune the ABC control parameters based on 
problem. Also literature says that basic ABC itself has 
some drawbacks like stop proceeding toward the global 
optimum even though the population has not converged to 
a local optimum [7] and it is observed that the position 
update equation of ABC algorithm is good at exploration 
but poor at exploitation [8] i.e, has not a proper balance 
between exploration and exploitation. Therefore these 
drawbacks require a modification in position update 
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equation and/or a local search approach to be 
implemented in ABC. These drawbacks have also 
addressed in earlier research. To enhance the exploitation, 
Wei-feng Gao et.al [9] improved position update equation 
of ABC such that the bee searches only in neighborhood 
of the previous iteration’s best solution. Anan Banhar- 
nsakun et al. [10] proposed the best-so-far selection in 
ABC algorithm and incorporated three major changes: 
The best-so-far method, an adjustable search radius, and 
an objective-value-based comparison in ABC. To solve 
constrained optimization problems, D. Karaboga and B. 
Akay [11] used Debs rules consisting of three simple 
heuristic rules and a probabilistic selection scheme in 
ABC algorithm. Dervis Karaboga [9] examined and  
suggested that the limit should be taken as SN ×D, where, 
SN is the population size and D is the dimension of the 
problem and coefficient φij in position update equation 
should be adopted in the range of [-1, 1]. Further, Kang et 
al. [12] introduced exploitation phase in ABC using 
Rosenbrock’s rotational direction method and named 
modified ABC as Rosenbrock ABC (RABC). In this 
paper, the effective modification in ABC that we made is 
the incorporation of a local search strategy in ABC after 
all its three (emplyoed, onlooker and scout bee) phases, 
based on linearly decreasing inertia weight (LDIW) [13]. 
This local strategy exploits only the global best position 
of the current swarm after each iteration. 

      Rest of the paper is organized as follows: In section 2, 
proposed modified ABC (FABCLS) is explained. In 
Section 3, performance of the proposed strategy is 
analyzed via numerical experiment. Finally, in section 4, 
paper is concluded. 

II . FAST-CONVERGENT ARTIFICIAL BEE COLONY WITH 
AN ADAPTIVE LOCAL SEARCH 

This section explains the proposed modified ABC 
algorithm. In this paper a new self adaptive local search 
strategy is incorporated with ABC. The motivation for the 
proposed modifications is described as follows:  

       As mentioned earlier, if φij and difference between 
randomly selected solution and current solution is high in 
position update equation of ABC then there will be 
sufficient chance to skip the global optima. In this 
situation, some local search strategy can help the search 
procedure. During the iterations, local search algorithm 
illustrates very strong exploitation capability [14]. 
Therefore, the exploitation capability of ABC algorithm 
may be enhanced by incorporating a local search strategy 
with ABC algorithm. 
       In this way, the exploration and exploitation cap-
ability of ABC algorithm could be balanced as the global 
search capability of the ABC algorithm explores the 
search space or tries to identify the most promising search 
space regions, while the local search strategy will exploit 
the identified search space. 
       Therefore, in this paper a self adaptive local search 
strategy is proposed and incorporated with the ABC. The 
proposed local search strategy is inspired from linearly 
decreasing inertia weight (LDIW) [13]. 

In the proposed local search strategy, the required 
step size (i.e.,φ(x− xrandom)) to update an individual is 
reduced self adaptively to exploit the search area in the 
proximity of the best candidate solution. Thus, the 
proposed strategy is named as self adaptive local search 
(SALS). In SALS, the step size is reduced as a 
logarithmic function of iteration counter as shown in 
equations (2) and (3). In SALS, the random component 
(φij) of basic ABC algorithm is optimized to direct the 
best solution to update its position. This process can be 
seen as an optimization problem solver which minimizes 
the unimodal continuous objective function f(φij) in the 
direction provided by the best solution  xbest over the 
variables w1,w2 in the interval [−1, 1] or simply it 
optimizes the following mathematical optimization 
problem: 

                      min f(φ) in [−1, 1];               (1) 

 SALS process starts with initial range (w1 = −1, w2 = 1) 
and generates two points in this interval by diminishing 
the edges of the range through a greedy way using the 
equations (2) and (3). At a time, either of these equations 
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is executed depends which f(w1) or f(w2) has better 
fitness. If w1 provides better fitness then edge w2 of the 
range shrinks towards w1 otherwise w1 shifts itself near 
to w2. The detailed implementation of SALS can be seen 
in Algorithm 1. 

        w1 = w1 + (w2 − w1) × t / maxiter       (2) 
        w2 = w2 − (w2 − w1) × t / maxiter       (3) 

where, t and maxiter are the current iteration counter and 
maximum allowable iterations in the local search 
algorithm respectively. 
     Algorithm 1 terminates when either iteration counter 
exceeds the maximum iteration allowable in local search 
or absolute difference between w1 and w2 falls below a 

user defined parameter .  
       In algorithm 2, D is the dimension of the problem, 
U(0, 1) is a uniformly distributed random number in the 
range  (0, 1), pr  is a perturbation rate and is used to 
control the amount of disturbance in the best solution xbest 
and xk is a randomly selected solution in the population. 
      As the modifications are proposed to improve the 
convergence speed of ABC, while maintaining the 
diversity in the swarm. Therefore, the proposed strategy is 
named as “Fast-convergent Artificial Bee Colony with an 
adaptive Local Search” (FABCLS). 
The FABCLS is composed of four phases: employed bee 
phase, onlooker bee phase, scout bee phase. The last 
phase, namely self adaptive local search phase is executed 
after the completion of scout bee phase. The pseudo-code 
of the proposed FABCLS algorithm is shown in Algo 3. 

Algorithm 1: Self Adaptive Local Search (SALS) 
Strategy: 
Input: Optimization function M inf(x), the best solution 
xbest; 
Initialize termination parameters , maximum number of 
iteration counter maxiter and variables w1 = −1, w2 =1 
and itercount = 1;while (|w1 − w2|  >  and itercount  ≤  
maxiter ) do 

Generate two new solutions xnew1 and xnew2 from  xbest by 
using w1 and w2, respectively using 

     Algorithm 2; 
     Calculate f(xnew1)  and  f( xnew2); 
     if f(xnew1) < f(xnew2) then 
         w2 = w2 − (w2 − w1) × itercoun / maxiter ; 
         if f(xnew1) <  f(xbest) then 
         xbest = xnew1; 
        end if 
   else 
       w1 = w1 + (w2 − w1) × itercount / maxiter ; 
       if f(xnew2) < f(xbest) then 
       xbest = xnew2; 
       end if 
       end if 
  Set itercount = itercount + 1; 
 end while 

Algorithm 2: New solution generation: 
Input: w and best solution xbest ; 
  for  j = 1 to D do 
       if U(0, 1) < pr then 
       xnewj = xbestj + w(xbestj − xkj ); 
      else 
       xnewj = xbestj ; 
      end if 
  end for 
  Return xnew 

Algorithm 3: Accelerating ABC using adaptive local 
search (FABCLS): 
   Initialize the population and control parameters; 
   while Termination criteria is not satisfied do 
         Step 1: Employed bee phase. 
         Step 2: Onlooker bees phase to update the food 
         sources based on their profitability. 
         Step 3: Scout bee phase to determine the new 
         food sources for exhausted food sources. 
         Step 4: Apply self adaptive local search 
         strategy phase to exploit the best solution found 
         so far using Algorithm 1 
    end while 

    Return the best solution. 
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III . EXPERIMENTAL RESULTS AND DISCUSSION 

A. Test problems under consideration 
To validate the effectiveness of the proposed algorithm 
FABCLS, 15 mathematical optimization problems ( f1  to  
f15 ) of different characteristics and complexities are taken 
into consideration (listed in Table 1).These all problems 
are continuous in nature. Test problems f1 − f15 are taken 
from [15]. 

B. Experimental setting 
The results obtained from the proposed FABCLS are 
stored in the form of success rate, average number of 
function evaluations, standard deviation of the fitness and 
mean error. Results for these test problems (Table I) are 
also obtained from the basic ABC and recent variant of 
ABC named Modified AB (MABC) [16] for the 
comparison purpose. The following parameter setting is 
adopted while implementing our proposed and other 
considered algorithms to solve the problems: 
 The number of simulations/run =100, 
 Colony size NP = 50 [17-18] and Number of food 
 sources SN = NP/2, φij = rand[−1, 1] and limit = 

Dimension×Number of food sources=D × SN[11, 
16], 

 C = 1.5 [8], 
 The terminating criteria: Either acceptable error 

(Table I) meets or maximum number of function 
evaluations (which is set to be 200000)is reached, 

 The proposed local search in ABC runs either 10 
times (based on empirical experiment) for each 
iteration or  = 0.001 whichever comes earlier in 
algorithm. 

 Parameter settings for the other considered 
algorithms ABC and MABC are adopted from 
their original articles. 

C. Results Analysis of Experiments Results Analysis   of 
Experiments 

Table II presents the numerical results for benchmark 
problems of Table 1 with the experimental settings shown 
in section B. Table II shows the results of the proposed 

and other considered algorithms in terms of average 
number of function evaluations (AFE),  standard 
deviation (SD), mean error (ME) and success rate (SR). It 
can be observed from Table II that FABCLS outperforms 
the considered algorithms most of the time in terms of 
accuracy, reliability and efficiency. Some other statistical 
tests like acceleration rate (AR) [19], and boxplots have 
also been done in order to analyze the algorithms output 
more intensively. 

D. Statistical Analysis  

Algorithms ABC, MABC and FABCLS are compared 
based on SR, AFE, and ME. First SR of all these 
algorithms is compared and if it is not possible to 
distinguish the performance of algorithms based on 
SR then comparison is made on the basis of AFE. ME is 
used for comparison if the comparison is not possible on 
the basis of SR and AFE both. It is clear from Table II, 
when the results of all functions are evaluated together, 
the FABCLS algorithm is the cost effective algorithm for 
most of the functions.  

Since boxplot [20] can efficiently represent the 
empirical distribution of results, the boxplots for average 
number of function evaluations for all algorithms 
FABCLS, ABC, and MABC have been represented in 
Figure 1.Figure 1 shows that FABCLS is cost effective in 
terms of function evaluations as interquartile range and 
median of average number of function evaluations are 
very low for FABCLS. 

Further, we compare the convergence speed of 
the considered algorithms by measuring the AFEs. A 
smaller AFEs means higher convergence speed. In order 
to minimize the effect of the stochastic nature of the 
algorithms, the reported function evaluations for each test 
problem is averaged over 100 runs.  

In order to compare convergence speeds, we use 
the acceleration rate (AR) which is defined as follows,  
based on the AFEs for the two algorithms 
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Fig 1: Boxplots graph for Average number of function 

evaluation 

ALGO and FABCLS: the AFEs for the two algorithms 
ALGO and FABCLS: 

               AR ൌ AFEALGO  / AFEFABCLS      (4)  

where, ALGO2 {ABC, and MABC} and AR > 1 means 
FABCLS is faster. In order to investigate the AR of the 
proposed algorithm as compare to the considered 
algorithms, results of  Table II are analyzed and the value 
of AR is calculated using equation (4). 

Table III shows a comparison between FABCLS - 
ABC, and FABCLS - MABC in terms of AR. It is clear 
from the Table III that convergence speed of FABCLS is 
better than considered algorithms for most of the 
functions. 

IV . CONCLUSION 

ABC is a simple algorithm with very less parameters with 
drawbacks like premature convergence and poor in 
exploitation. This article proposed a self adaptive local 
search strategy and incorporated it with ABC to enhance 
the exploitation capability. The proposed algorithm has 
been extensively compared with other recent variants of 
ABC namely, MABC. Through the extensive 
experiments, it can be stated that the proposed algorithm 
is a competitive algorithm to solve the continuous 
optimization problems. 
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Table I 
Test Problems 

 
 

Test Problem  Objective Function Search Range Optimum Value  D Acceptable 
Error

Parabola ሺSphereሻ f1 ( ) =  ሾ ‐5.12 , 5.12ሿ fሺ0ሻ ൌ 0  30 1.0E – 05

De Jong's f4  f2ሺ ሻൌ   ሾ ‐5.12 , 5.12ሿ fሺ0ሻ ൌ 0 30 1.0E – 05 

Griewank f3ሺ ሻൌ 1൅   – ሻ ሾ ‐600 , 600ሿ fሺ0ሻ ൌ 0 30 1.0E – 05 

Rosenbrock** 
  f4( )=      2)2 +  )2 ) ሾ ‐30 , 30ሿ fሺ0ሻ ൌ 0  30 1.0E – 02

Ackley 
 

         f5ሺ ሻൌ    
ሾ ‐1 , 1ሿ fሺ0ሻ ൌ 0 30 1.0E – 05 

Alpine  f6 ሺ ሻ ൌ   ሾ ‐10 , 10ሿ fሺ0ሻ ൌ 0 30 1.0E – 05 

Michalewicz function  f7 ሺ ሻ ൌ  –  ሺ        ሻ20 ሻ ሾ 0 , πሿ fmin ൌ ‐9.66015 10 1.0E – 05 

Salomon Problem ሺSALሻ 
fሺ0,0,0,0,0,0ሻൌ0  f8ሺ ሻൌ 1 – cosሺ2π  ൅ 0.1 ሺ ሾ‐100, 100ሿ fሺ0ሻ ൌ 0  30 1.00E‐01

Axis parallel 
hyperellipsoid f9( )=  ሾ ‐5.12 , 5.12ሿ fሺ0ሻ ൌ 0 30 1.0E – 05 

Sum of different powers  f10ሺ ሻൌ  ሾ ‐1 , 1ሿ fሺ0ሻ ൌ 0 30 1.0E – 05 

Step functionሾ100, 100ሿfሺ‐
0.5൏ൌx ൏ൌ0.5ሻൌ0  f11ሺ ሻൌ  ሾ‐100, 100ሿ fሺ‐0.5൏ൌx 

൏ൌ0.5ሻൌ0 30 1.0E – 05 

Inverted cosine wave 
function ሺMastersሻ ሾ‐5, 5ሿ 

fሺ000..0ሻൌ‐D൅1 

f12ሺ ሻൌ –    x I ሻ

where I ൌ cosሺ 4  ሻ
ሾ‐5,5ሿ fሺ0ሻ ൌ                

‐D൅1 10 1.0E – 05 

Neumaier 3 Problem 
ሺNF3ሻ ሺNeumaier, 2003bሻ  f13ሺ ሻൌ  ሾ‐D2,D2ሿ

fmin ൌ 

      10 1.00E‐01 

Rotated hyper‐ellipsoid 
function 

f14 ሺ ሻ ൌ  ሾ‐65.536, 
65.536ሿ fሺ0ሻ ൌ 0  30 1.0E – 05 

Levi montalvo 1  
f15 ሺ ሻ ൌ   ሺ 10sin2ሺπ ሻ ൅  ሻ2  x ሺ 1 ൅ 

10sin2ሺπ ሻሻ ൅  2 ሻ where  ൌ 1 ൅ ሺ 
ሾ‐10,10ሿ fሺ0ሻ ൌ 0  30 1.0E – 05 
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Table II  
Comparison of the results of test problems 
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Table III 

Acceleration Rate (AR) of FABCLS as compared to the ABC and MABC, TP: Test Problems 

 

 
 
 
 

TP ABC MABC 
f1 1.789789021 1.96079635 
f2 1.630366328 3.844045848 
f3 1.427561747 1.36838962 
f4 0.893905381 1.034286084 
f5 1.538661587 1.35774579 
f6 1.732237123 4.462132855 
f7 1.692745642 2.262139944 
f8 6.837846389 1.190251731 
f9 1.715578036 1.942186565 
f10 4.593910368 2.708310738 
f11 1.404979294 1.935523278 
f12 2.563734002 1.952887338 
f13 15.03419457 10.30569318 
f14 1.645067827 1.945601992 
f15 1.831326494 2.123712958 


